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ABSTRACT

The general purpose of the work reported here is to obtain the best
possible feasible signal processing algorithms for estimating from radar
data characteristics and trajectory parameters of bodies moving in the
air.

This report starts with a- extensive set of numerical resuLts showing
the effectiveness of the simplified dynamics equations evolved in approxi-

* mating pertinent characteristics of trajectories calculated by the BRL
* point-mass model. Next, a mathematical derivation of the optimal recursive

algorithm for filtering and smoothing radar data, formulation for which was
presenter! in our previous Quarterly Progress Report [2), is presented. A
technique for evaluation of recursive filtering-smot. -hing algorithms by
deterministic calculations is then presented. This technique will enable
the assessment of expected random and bias errors in trajectory estimation I
efficiently so as to avoid the need for a large number of simulation runs.
In closing, plans are described for presenting numerical results obtained
In the final report. These will include true minimum variances in trajec- ' .

tory parameter estimation (assuming idealized processing)x demonstration by
simulations and deterministic calculations of the effectiveness of the re-
cursive smoothing and filtering algorithms obtained.
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FOREWORD

This report describes work done from 1 November 1971 through 31 January

1972 at the Moore School of Electrical Engineering, University of Pennsylvaniaj,

under contract number DAAB07-71-C-0212 with U. S. Army Electronics Command for

research entitled "The Estimation of Trajectories from Radar Data". The cogni-

zant technical personnel at USA ECOM are Dr. Leonard Hatkin, head of the Radar

Technical Area and Mr. Donald Fojani, CSTA Laboratory, Evans Area, Fort Monmouth,

N-J•. 07703.
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1. INTRODUCTION

As indicated in the previous Quarterly Progress Reports L1,2e, this work
is concerned with the general signal processing problem of estimating charac-
teristics and trajectory parameters of a body moving in the air from noisy
radar observations.

The main thrust during this quarter has been to evaluate the simplified
dynamics equations evolved, and to complete, refine, debug and conduct sample
runs of computer programs to do the following tasks: a) obtain algorithms to
perform optimal recursive smoothing and filtering from simulated noisy radar
data; b) deterministic evaluation of expected filter-smoother algorithm per-
formance; and c) determination of idealized or minimum variance sensitivity
of trajectory parameter eatxmation accuracy to radar observation errors.

The evaluation of the S "ified Dynamics Equations is presented in Sec-
tion 2 to follow. Revised values for universal drag and drift curves are pre-
sented, followed by a set of runs of a wide variety of projectile trajectories
showing resultant backtracking errors due to the simplificd dynamics.

The detailed formulation required to perform optimal recursive smoothing
and filtering of noisy radar data was presented in Section 4 of ref. 2. The
required mathematical deriliation of the algorithm is included here in Section
3 below. Details of the simulation program, performance evaluation for track-
ing and parameter estimation of trajectories will be included in the final re-
port.

in Section 4 is presented the derivation of a deterministic method for
evaluation of expected filter-smoother algorithm performance. This technique
can account for bias errors as well as random errors in radar observations,
for both the optimal filter-smoother algorithm described in Section 3 and also
arbitrary non-optimal recursive algorithms that may be employed.

The program for the idealized sensitivity study has been debugged and
results are being prepared for the final report. These results will be use-
ful in assessing the efficiency of the recursive algorithms developed as well
as providing tradeoffs as to significance of different types of errors.

1"
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2.0 EVALUATION OF SIMPLIFIED DYNAMICS EQUATIONS

The devclopment of simplified dynamics equations, incorporating approxima-
tions to drag and drift accelerations, was presented in ref. 2, Section 2. The
work presented here consists of a refined set of numerical constants needed for
the approximations used plus an extensive set of evaluation resalts for the four
different projectiles considered.

The refined set of approximation constants is presented in Table 1. Three
sets of polynomial coefficients are given defining "universal" curves for drag,
drift, and spin.

Evaluations of the Simplified Dynamics approximations are 3resented in
Tables 2a, b, c, and d for the 105mm, 155mm, 175mm, and 8-inch irojectiles,
respectively. In each case results are shown for a variety of charges and
quadrant elevation angles. Computations of backtracking accuracy are per-
formed for reversal times given in multiples of ten seconds.

The principal factors affecting the errors are (i) time of reversal, corr-
esponding in the use of the system to the time at which thn state vector esti-
mate is made; (ii) quadrant elevation, and (iii) projectile type.

Item (ii) is a geometric sensitivity factor. For small quadrant elevation
angle QE, the backtracking trajectory is nearly rarallel to the ground as it
nears the launch point. A small vertical error is magnified by the cosecant of
the angle QE. The values of the error in X, in Table 2, multiplied by sin(QE)
give values that cluster together much better than the values oC the error as
given in the Table. This is illustrated in Table 3, showing the3 ratio of LT,

the normal distance of trajectory computed by the simplified dynamics from the
true trajectory at the launch point, to IX the longitudinal error in launc!h

point due to the simplified dynamics approximations.

At 10 second reversal time, the largest value of (error in X)(sin QE) is
4.7 meters, for the 155mm shell at QE = 216 mils. At 20 second reversal time

* the largest value is 25.8 meters, for the same trajectory. If the 155rm shells
are excluded, the largest error products are 2.5 and 15.6 meters respectively
at JO and 20 second reversal time, both for 105mm shells.

The sensitivity to projectile type suggests that the aerodimamic drag func-
tion fit could be tailored better to apportion the errors over the different
projectiles, so that the 155mm and perhaps the 105mm errors wouLd be decreased
at the expense of the 175mm and 8-inch errors. For the latter two projectiles,
the largest values of (error in X)(sin QE) were 2.1 meters at 10 sec. reversal
time and 12.5 meters at 20 sec. reversal time, both for the 175rm shell at
QE = 2144.

For all the cases studied, the importance of backtracking from a smoothed
state vector as soon as possible is apparent. The drag approximation leads to
unacceptably large errors for reversal times much in excess of ten seconds.
This points out the importance of the "smoothing" as opposed to "tiltering"
features of the recursive algorithm being developed.

-2-
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Quadrant Sin(QE)

Elevation, Ee~zti~mils (ZI£X) x:

S300 .290oV
4oo .382

050 .471
6c? .555
700 .635
boo .706

. -/

T

x

Table 3 Ratio of Trajectory Error Z to X-coordinate 75

T 3T
Error as a Function of Quadrant Elevation

Angle
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3-0 DEVEIOPMENT OF ESTIMATION ALGORIThMS

3.1 Introduction. This section will be devoted to the development of the non-
linear filter-smoothing algorithm presented in +,he second quarterly report. The
derivation is based on a gaussian approximation to optimal conditional mean es-
timation and follows similar developments described by Wishner et.al. [Li for
extended Kalman filtering. The filtering equatians are a modification of their
results; the smoothing equations are new. An Diler-type integration scheme is
assumed for the system dynamics.

3.2 Problem statement. Consider the problem of determining sequential estimates
of the n-dimensial state vector x= x of a dynamic system given corrupted dis-

j
crete m-dimensional observations (or measurements)

Zk k) + Vk()

The Ii(-) is an m-vector nonlinear function of the state, and the set tvkk=i,...]
is a white gaussian sequence with r X r covariance matrix

E~k vJ Rkj (2)

The evoluticn of the state vector is described by the vector (ItS) stochastic
differential equation

dxt f(xtt)dt + g(xt.t)dpt (3)

where f(-.,t) is an n-vector, g(-,t) is n X r, and •t is an r-vector Brownian
motion process with

SEdpt,dp) Qt dt (4)

The initial state is assumed to be a vector of gaussian random variables with
mean x0 and covariance matrix cov(xoXo0 Zo0

3.3 Gaussian approximation for conditional mean estimation. The criterion for
optimal estimation will be the minimization of the conditional expectation of
the quadratic form.

Ref. 2., Section 4.O.

-9-
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X-l- IS k. lk where S. is an arbitrary positive definite weighting matrix. Thexj T, ,.x k error

vector xjk = - denotes the error made in estimating the state x with

an estimate based on the given realization of observations

Z zT ZT zT T
1k 1 ...... zk)

The estimate that minimizes this criterion is known [4] to be equal to the
expectation of x. conditioned on

J

This estimate is commonly described as the minimum variance or minimum mean-
squar error estimate.

Unfortunately E ~xj I Zki cannot be determined exactly for the general non-

linear problem. This is a consequence of the fact that an infinite number of
terms is required to completely characterize the conditional probability
density function P(xjlzk) N14. If however it can be shown that the xj and

are vectors of gaussian random variables, the density function can be fully
described by the following expressions for the conditional mean and auto co-
variance matrix:

EfxjIlk] E(xIZkI] - cov(xZklZkll)c(v(zl,,zk Zkl)(z k - EfzklZk.1))

(7)

cov(X xj JZk ) = cov(xj'xj k. - cov(xjzklZkl)cov'l(zkzk iZk.)cov(zkqxjiZk-l)

(8)

where

cov( x Iz, ) I Z. E( - E{xa1ý.) (xs - E~x 1 IZ (9)

We are motivated by the relative simplicity of equations 7 and 8 to assume
that for x gaussian, xj will be at least nearly gaussian. Sorenson and

-10-
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Stubberud ] explored this idea rather thoroughly by assuming the a posteriori
density function to be expanded in an Edgeworth series

p(xjzk) = Zk)[1 + c3H3(xJ1Zk) + cI I xjizk)+

where ,P(-) is the conditional gaussian density" function and the H ) are hermite
polynomials. Their experience with filtering algorithms would ndicate that the
inclusion of the higher order terms in equation .0 is often onl.- of marginal value

and is computationally iJpractical for all but scalar and simplte second-order systems.
Other authors le.g. 3,5 I have investigated different expansions for p with

similar results. Since our desire is to develop a filter-smoothing algorithm
that may be realistically implemented for a system relatively high order, we are
by practicality constrained to the assumption that equation 10 nay be truncated
after the first term, i.e. that the x. and are jointly gauss..an. The experi-

ence of other authors [summarized in reference 81 with the reentry vehicle track-
ing problem would indicate that this is a reasonable assumption. Thus recalling
equation 6 we have for the evolution of the optimal estimate due to the observa-
tion of Z.

Xjik = jlk-1 + cov(xjtzklZk- 1)cv -(zk•'zkZk-1)("k- klk-1) (u1)

and

co. (X..Vx. co9 xz 1Z ')co&1c (jxlzk) =cov(x.,x.Iz,lk) cov(xk-k-l (zk z -IZk)O( Zk, 1_)

(12)

"where now

cov , z = E'xj ^TI (13)

3.4 Taylor series approximations for estimate updating. Approximations to the
elenent term• in equatio _ 13 and 12 are obtaizzied Ly expaading the various aon-
linear vector functions in a Taylor series about some nominal trajectory state.
A logical choice for this nominal state would be the current best estimates of
xk. Expanding h(-) to first order terms in lkl we obtain for the measurement

"k = h(xlk-l) + •x klk-1 +'k (11)

-11
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and thus taking expectations

zk -l h ''klk-i (15)

E 11 is defined as the m X n Jacobian matrix of h(-) with element:;

Ih
LHJ anti) (16)

The approximate measurement residual z may now be determined by sub-
trac(ting equation 16 from ALin.,

Zkik-l Xkik-). (17

Sub:;tituting the above expression into the deCining term for the measurement
conditional covariance

Se1V azf t i 1 n 2 ob n (18)

I we deduce after some manipilatior that

co~k~zkI'k-l) = Hkcov'xk'xklZk-1) + i (9

The following first-order approximation to the cross-covariance matrix
coy~ z1 is determined similarly from equ;Aion 17

cov(X j zk171-1) = cov(xj.,xv1zk-XH (20)

I If in equation 20 j equals k, i.e. only the filtering problem is being con-I sidered,' then equations 19 and 20 would be su'ficient and the development of the
esti'mate update equations would be complete. That is., substituting equations 15,

19, and 20 for terms in 31 and 12 one obtains for the filter

-12-



= 1k Ikl- + cov('x.kY zk-l)Sk'k (21)

where we denote the innovation

SZk h(k ) (22)Sk k Ik-1

and

covx~xIk = o~~xI )LI - S, Hk cov(xk-xk3Zk-1) (23)

with

Sk H({k.cov(xk'xkIZk-l)H T k)1

It may be noted the although equivalent to Wishaer's L7] equations these ex-
pressions are formulated somewhat differently. The reason will become clear

Swhen we determine the equations for smoothing.

In order to implement fixed-point smoothing an expression equivalent to
equation 19 is needed for updating the cross-covariance matrix cov(xJ, 17Z).
Such an expression may be deduced from the following lemma:

Iemma I. If U,, u2 and u3 are vectors of Jointly gaussian random variables, then

cov(uu 2Iu3 )= cov(ulu 2 )- ccv(,u)co 1 (u3 u )cov(u3,u2) (25)

A proof of Lemma I is included in Section 3 below.

BY identifying xO, xk, and z with and u3 respectively in equation

25 and recalling that Zk = (•-I" 2 )T, one sees that

cov(xjxklZk) = cov(xjxklk-1) -cov(xZlZ zl)Cov-l

(26)

i ~-13-_
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Taken together equations 19, 20, and 26 describe the necessary relationships for I
updating the cross-covariance terms cov(xjxklZk) and cov(xkXjZk)(=cov(xj,xklZk) T).

F Making the appropriate substitutions we determine

cov(xjxklZk) = cov(xjxklZk-z)LI - SkH kcov(xkxklZk-1)] (27)

We shall use equation 27 along with the expression

Xjlk = jk-.l + cov(xj,-xkiZkl)sk k (28)

to define the nonlinear fixed-point smoothing estimate updating. The smoothing
is initiated by the filtered estimates xj j and cov(xi 1 x I Z), or if j = 0, then

obviously by i and cov(xox). It should be noted that with the above formula-

tion, fixed-point smoothing introducep no additional matrix inversion operations
to the estimation algorithm.

Assuming the necessary extrapolation equations describing the evolution of I
the estimates between samples are available, the algorithm is complete even
though no expression has been determined for the auto-covariance cov(xAxj Z.).
We include such an expression for completeness;

cov(xj,xJZ]k) = cov(xJ,xjzk-l) - cov(xjpxklZk-l)SkHkcov T (xjxklZk.1) (29)

The development of the dynamic equations for the various estimates and asso-
ciated covariance matrices between samplez will now be considered.

3.5 Estimate extrapolation. Recall that the evolution of the system state vector
is assumed to be described by the expression

dxt f(xt,t)dt + g(xt,t)dct (3)

series~~~ abu th stmt

Proceeding as before, we expand f(xt,t)(for tk.1 '5 t tk) in a first-order Taylor
Sseries about the estimate X^k_

dxt : Lf(itlkl +t) + Ft tIlk dt + g(xtt)d~t tk1 • t tk (30)

I "ti k- I
____ ____ ___14__



where

Lf) taxtt (31)

t Atk-

i n light of our discussion on minimum variance estimators and equation 6, we
determine the following dynamic equations for the suboptimal estimate

I, d Xttk1 = f(Xtlk-l,t)dt (32)

and estimate error between measurement samples

Ct -= Ft Xtl dt + g(xst)d13 (33)

In order to facilitate on-line estimation, the dynamic equations will be
discretized by simple Euler numerical integration. Integrating equations 32
and 33, we have for tk = tk-1 + At

Xklk- = xk-lk-1 + (k.lk _ (3k)

and

xIkl =i + F kat)xk.lik-l + g(xklJ k-l)wk_1 (35)

where the wk are defined to be elements of a white gaussian sequence with

=( j 1j (36)

In ordeý' to simplify the notation, we shall define the following terms

Although treating the noise process in this manner is certainly an abuse of the
theory of stochastic differential equations (see ref "LV4, chapter 4 for example),
it will suffice in our context of the estimation problem.
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I +t (37)
k-i k-i

4t Qt k-i (38)

Substituting equation 37 into 35 we have

xkk-tk k-i X-lk-lk + g(xk (3)

Errors introduced into the estimate extrapolation by discretizing equation 33
may be reduced somewhat by including second order terms (in At) in the expansion,
i.e.

2
k k-i lk-l + f -Ijk-lstk-l) + _r- Fk - 1 if ilk l~tk(4

Since the inclusion of the additional factor does not require that we determine
any additional matrix terms [Fk_1 must be computed anyway], increased accuracy

may be obtained at little computational cost. As a consequence, equation 40
will be employed in preference to equation 34 for estimate extrapolation.

Approximate equations for cov(xkxklZk l) and cov( xklZk) may be deter-

mined by substituting equation 39 into the appropriate iefining expression. Thus
for

Sov(xkxkIZkl_) = ER••',l •I•-lI•-l1 (4)

we bnve

cov(xkxklZk-1) : Eti k-i `Ik-1 + g(xk-l'tk-lbwk-1]

(4~2)

k-i k-I + K-i -i k-i

which reduces to

"-16-1
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cov(x¶kxkIZk-) t ~K-1 Cov(xk-l'xk-l1Zki)'~ k-i1

"li Eg(xI[l'ttk-l)Qk- gT(xklt-) iZk-13

Further reductions are not possible without expanding g(xk-ltk-l)Qk'1 Tg (xk-l$

Sabout the ýk ilk- ". ominal trajectory. Proceeding with the Taylor series

expansion., we determine to first order in xklthat

cov(xktxklZk-1) ' k lcov(xk l-'xk 1jzk- 1 )J k-1 + g(ik-1lk-lAtk -l)

* 1 ~(414)a

The expression for the cross covariance term is determined in a similar manner

c=~ I+T (145)

CO co~ JxklZk~l)tTk l (146)

~ IWe sunuaize our development by collecting the various results into the
following theorem.

I Theorem I. The fi.st-order filter-smoother for the di scretized nonlinear
system des-cribed herein consists of the following extrapolation equations be-
tween samplesX

t2 
A

I~ ~ ~ at f(iktktl + _- F 1  (10)

cov~xkv= -k-1)c~~x~l~k k-i + xklkvt,) 1

cov(xj'xklZk-)= cov(xj~xk-llZkl)PT (1.6
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and the following upda4e equations at the samples

xi kkl+ cvxlkklSk (21)

(23).

ILI

ana

Io~ - (~cv xklk,x, [Iz g SHk coT  +xl~ _) (27&)

k k h(k I-18-22
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3.6 Proof of~ Lemma i

Define the augmented vector

ii U=

and sutatitute it into the following augmented covariance matrices

ul ( T. cov(ul.,ul) COY(U1 -,~.r)..
cov(U,1U) E (48)T~ 6VU~ 1 )O6~;~)

r ~su OOVU1 U)

covuu3u3  cov= (149)
co(UU4 Lýýi~V co. (49)~U3

co'~U) EyT T (50)

cov~u31u) 1 t 3 uu 2) LcOv(u3'ul)'cov(u3,u2)J

These expressions may now be substituted into the equation for the conditional
covariance cov~uuu)

cov(U,1Uju3) =cvU-) cov(U~u3)co' (u3 ,,u3 )cov(u 3 ,U) (1'1 = cv(UA

Performing the indicated matrix operations we o~btain

(UIU'ý:O(1UI rw1( u!: iuv) u3vu~i u3 co u3)

1 (52)
S The off-diagonal term is recognized as the desired result.
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4.0 DETERMINISTIC COMPUTATIONS FOR EVALUATING FILTER-SMOOTHER PERFORMANCE

4. 1 Purpose. The conventional way to evaluate a RATRAN signal.-processing filteris by a program of Monte Carlo computation, as described in the next paragraph.This memo outlines a deterministic method for the same purpose. The deterministic
method requires more programming. It gives in return oetter insight into the mean-
ing of the results and freedom from sampling variances.

These results are directly applicable to evaluation of recursive filter-smoother
algorithms such as the one developed in Section 3 above. While expressions are in-
eluded in the above work for estimate covariances, such expressions are limited to
the specific conditions required for the optimalization. The formalization presented
here enables computing the effects of radar bias errors, and also errors due to other
system and environmental deviations from conditions assumed in the optimalization.

4.2 Conventional method. In the conventional method, for which the programming is
in progress, a trajectory is selected and a number of state vectors

X k x(tk) k =l,...,n (53)

are computed. The noisefree radar observation vectors

rk = h(x) k = l,...,n (54)

are also computed. These are used repeatedly with different samples of radar noise
vectors vk, and possibly a radar bias vector b(xk), giving

z = h + h + vk (55)
k

for the radar observation vectors. The z's are used as inputs to the filter equa-ttions rwhich compute the estimated state vectors and the errors in the estimated
state vectors

-x . (56)6 xk k 'k
* For a number of samples of radar noise, the mean of the observed errors in (56) is

taken to be the bias .(6x) of the filter in the estimate of x(tk). The cov.rience

of the error is taken to be the mean of (6x - 2(6x)(6x - E(6x))T, for the noise
samples used.

4.3 Outline of deterministic method. The deterministic method, outlined next,
does not use radar noise samples. Instead it uses the mean and the covariance
of the radar noise. The deterministic computations follow the propagations of
the means and covariances through the filter, instead of the actual errors as in
the Monte Carlo computations.

-20-
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xkU r~xkl,wklJ (57)

be the true transition function, where as before xk is the state vector at time

tk and now Vk is a parameter vector. The components of w are those scalar para-

meters whose effects on the trajectory are of interest: wind velocity components,
air density, etc. (In the conventional or Monte Carlo computations, it is conven-
ient to separate the bias errors from the random in the deterministic
method it is convenient to discuss them, and even to compute their effects$ con-S! ~currently. )•

The filter. in its prediction step, computes, using an estimated parameter

vector

where g(..,-) differs from f(-,-) in RATRAN because of the use of the simplified-
dynamics equations in the filter, and also because of truncation errors in the
filter computations. Let

p(xw)= g(x*w)- f(x,w) (59)

by definition, for any (xw).

The filter then computes

k= xkEk-i + Ak(zk - h(xlk-1)) (6o)

where A is the Kalman gain matrix, here assumed to be lrecomputed -- i.e., to

be a function of xk rather than of

SLet Hk be the matrix with element ohi(xk)/ax(j) in row i and column j, where
hi(.) is the ith element of the radar coordinate vector rk and x(j) is the JA

element of the state vector x(tk), so that

• h(iklk_,- h(xk) + k 6xkIkl (61)

+ 4N
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where

(62)

is the error in the prediction step of the filter. Then (5s), (60). and (61) give,
S• approximatelyp

6xk : Ak(b(xk) + vk) + (I - 6 '~cjkk.l (63)

The computation (58) may be written

6 xk~k_1 g(xi , k) " f(x 5kl)

-g(x.lw.l) - g(xklwk_) + q(%.z,.-)

Then

_X3. ~- + %_Gk~l + %-) 6wk~ (614)
&Z

where is the matrix that has in row i, column j the partial derivative of
the ith cquponent of g(xpw) with respect to the jth component of x, evaluated at
tk13%4 {is similarly defined except that the partial derivatives are with re-
spect to the components of w; and

"~4k-l = P(xk-l,#'k-)

k-l = -(l k-1k

Substitution of (64) into (63) gives

6xk Ak(b(xk) + vk) + (I - 1k)( • -. + Gl 6 1 )

2 1+(I- AkHk)Vl 6 xk~l (6.5)

II
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r
Equation (65) hold equally well for the Monte Carlo computations as for what

follows below. In the deterministic computations, equation (65) is not used, but
instead the equation that follows from taking the expected value of both sides is
used:

E(6xk) - Akb(xk) + (z - VY(•k.l + G. 1 
6 wk.)

+ (I "AkHk�l)G E(6xk.I) (66)

In (66), it has been assumed that 0 is deterministic and that EVk = 0. It would
be easy, but I believe not useful in RATRAN.9 to let W^ have random components.
Each symbol in (66) except E(6xk) and E(6xk~) represents a quantity that is
known before the error computations begin. Therefore (66) may be used, given an
input value for the mean initial error vector E(6x ), to compute the mean error
in each 0

If we write

= Ak(b(xk) + vk) + (I - )(k- + - Wk-) (67)

for the forcing term in (65) and

((68

for the loop gain, so that (65) becomes

6 Xk = Yk + Ck 6 xk- (69)

it follows that

cov(6 xk, 6 xk) = cov(ykYk) + Ck cov(6xk_l.•.x)T

•+ ov(kOk, .)CT + ck cov(6 xkl,,yk) (70)

If all the terms in (67) are deterministic except for Vk, and if = 0,

- 1 -23-
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cov(yVkyk) k A.eov(vkvk)A 'l

and if further the Vks are uncorrelated for different values of k, it follows
that

cov(yk, 6 xk_1) = cov(6xk.lyk) 0

Then (70) becomes

cov(6xk,'6xk) = k cov(vk-vk)A + Ck cov(6xk.l,6xk-9Ci 72

Equations (66) and (72) give the desired results.

Equation (66) gives also the effects of radar bias and other bias errors;
small bias errors of course have no effect on covariances.

For smoothing instead of filtering, an equation similar to (60), but using
a different matrix in place of A k, leads through identical steps to equations
similar to (66) and (72).

4.4 Explicit role of input errors. Equations (66) and (72), being recursive,
do not reveal to casual inspection how each input error affects the state vector
estimate. For additional insight, and under some conditions for an econo@y in
computation at the cost of some programing effort and some storage space, there
may be value in using instead (73) and (75) below.

Equation (66) implies

E(6xk) 'k + Ckyk_1 + CkCk-3yk.2 ÷k-.-C2'1

+ W 1ck... C2 Yl(8 xo) (73)

where

(I -- A-k(4;k k(xk) k I ('kP~k-1 + 11-1 Vk-)17

Equation (73) shows the contribution of the initial error input to the KlMan
filter, and the effects of the contributions from each radar look.
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Similarly equation (72) implies

cov(6xk.,6xk) + T+.+c .. cT T

+ CkCk~l... Clcov(6xOAxO)cT..T (75)

where

R'=A cov(vv)AT , J=l,...,k. (76)

.5 £ffects on l.aunch-point estimation. Let x, be the state vector last after
the launch. If x, is perturbed by a small vector 6xi, the effect on xk = x(tk)

is a change

6 xk = 6x (77)

where Uk is a square matrix of partial derivatives, with the partial derivative

of the rth component of xk with respect to the sth component of x, in row r,
column s. Then

E(6 xk) =. U (6x,) (8

and

T 7

cov(6xk=,6 x) U1 cov(6x,6x (79)k i ik

The elements of are being computed and stored, for a number of trajectories

and a number of values of k, for another purpose. From these elements there will
be computed the inverse matrices

Uk (IQ

for use in
z(6x,) - k• 9(6xk ()

and

-25-
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cov(6xi )i U cov(6xk,5xk)( 1 (81)

k Finally, the mean error in estimated launch point, and its covariance, will
be computed from

\6z4 LE(6x) (82)

and

cov , L= L ov(6x•,6x,)? (83)

where I -Jolko o o o o 0 )
L (84)

-E1o/• 1 0 0 0 0

adjusts for the time when the estimated altitude is zero, instead of t when the

estimated time-of-flight is zero. In (81), icoo, and o are the downrange, up-

ward, and lateral components of launch velocity.
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i.-0 CONCLUSIONS A

The results of Section 2 show the performance of the simplified dynamics
approximations to a variety of trajectories computed by the BRL point-mass
model. In general it is seen that the approximations provide reasonably accur-
ate computation of launch parameters provided that the time from uliich back-
tracking is initiated is sufficiently early. Error variations are due chiefly
Lo differences between the projectiles and to geometric dependence on quadrant
elevation angle.

Section 3 demonstrates the mathematical validity of the optimal smoothing-
filtering algorithm presented in the 2nd Quarterly Progress Report.

Section 4 presents a method for deterministic evaluation of recursive
filter-smoother algorithms, accounting for bias and modelling errors as well
as random nuise-like observation errors. This procedure can avoid the need
for extensive simulation runs for filter-smoother evaluation.

The remaining work planned in the next few months o.' this effort will be
mainly concerned with the application of computer programs and techniques des-
cribed in this and previous Quarterly Progress Reports. Specific results will
include:

(a) Minimum variances of trajectory parameter estimation errors caused by
errors in radar observations (assuming true optimum processing). Sensitivity
of results to radar-target geometry and radar system parameters such as track
time, data rate, and S/N will be indicated as well as an assessment of the
utility of doppler measurement for range-rate.

(b) Simulations of optimal filter-smoother algorithm performance for a
variety of radar-target geometries. Evaluations of performance will be pre-
sented. Comparisons will be made with true optimum (see (a) above) and sensi-
tivities will be determined with respect to bias and modelling errors. While
some Monte-Carlo simulation runs will be performed, most of the evaluations
will be based on the deterministic evaluation technique described in Section 4
above.

(c) Complete descriptions and listings of the computer algorithms and pro-
grams plus a guide to their use and an evaluation of their possible utility in
an operational system.
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